EDTA functionalized pine needle biochar (EDTA@BC); a valorized bio‐material for removal of Ni(II) from aqueous solution

Author:

Rasheed Aamir1ORCID,Rasheed Faiza2,Kayani Waqas Khan3,Jawad Muhammad1ORCID,Ghous Tahseen4,Irshad Muhammad1

Affiliation:

1. Faculty of Basic and Applied Sciences, Chemistry Department University of Kotli Kotli Azad Jammu and Kashmir Pakistan

2. Department of Biotechnology, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan

3. Department of Biotechnology, Faculty of Basic and Applied Sciences University of Kotli Kotli Azad Jammu and Kashmir Pakistan

4. Department of Chemistry Mirpur University of Science & Technology (MUST) Mirpur Pakistan

Abstract

AbstractThe preparation of ethylenediaminetetraacetic acid (EDTA) functionalized pine needles biochar (EDTA@BC) as a low‐cost active adsorbent and its effectiveness in removing Ni(II) from aqueous solution at various conditions is reported in this paper. First, alkali activation was selected to render the pine needle biochar with an excellent porous structure and increased concentration of hydroxyl groups to facilitate grafting. Subsequently, a simple method was utilized to graft EDTA onto the biochar. The prepared EDTA@BC was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive x‐ray spectrometry (EDX). Batch adsorption studies were conducted to assess the impact of various parameters such as solution pH, adsorbent dosage, adsorbate volume, and shaking time on the removal efficiency of Ni(II). At pH 6, 100 mg dosage, 4 mL of adsorbate volume, and 10 min of shaking time, the maximum removal efficiency of Ni(II) was observed to be 89%. EDTA@BC showed reasonable sorption performance still after the third cycle of regeneration. The effect of interfering ions such as Pb, Cr, Cu, and Hg was evaluated, resulting a decrease of 69%, 78%, 76%, and 68%, respectively, in its sorption capacity. The Langmuir model provided a better fit for Ni(II) in the concentration range of 0.1–2000 ppm under optimized conditions, with qmax of 46.69 ± 1.031 mg/g and KL of 0.001, compared with the Freundlich isotherm, which yielded n = 0.234 and χ2 = 2.7899, Temkin isotherm (R2 = 0.9520), and Redlich‐Peterson isotherm (R2 = 0.9725). The removal of Ni(II) by EDTA@BC was found to be the pseudo‐second‐order kinetics. Thermodynamic studies indicated adsorption process to be endothermic and nonspontaneous. Hence, a sustainable valorized bio‐material (EDTA@BC) is prepared having better sorption efficiency of Ni(II) from aqueous solution with possible wide applicability.Research Highlights New EDTA functionalized indigenous pine needles biochar (EDTA@BC) was prepared. This low‐cost active adsorbent found effective in removing Ni(II) from aqueous solution. FTIR, SEM, and EDX proved synthesis and uptake of Ni(II) from aqueous solution. Ni(II) removal, regeneration, interfering and adsorption studies were performed by UV–Vis spectroscopy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3