Morphology and composition of calcium oxalate monohydrate phytoliths in the bark of Betula ermanii (stone birch): Case study from Sakhalin Island

Author:

Sokol Ella V.1ORCID,Deviatiiarova Anna S.1ORCID,Kopanina Anna V.2ORCID,Filippova Kseniya A.3ORCID,Vlasova Inna I.2ORCID

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences Novosibirsk Russia

2. Laboratory of Plant Ecology, Institute of Marine Geology and Geophysics, Far Eastern Branch Russian Academy of Sciences Yuzhno‐Sakhalinsk Russia

3. South Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch Russian Academy of Sciences, Institute of Mineralogy Miass Russia

Abstract

AbstractThe morphology of calcium oxalate monohydrate precipitates (COM, Ca(C2O4)·H2O, P21/c, whewellite) occurring as crystals or intergrowths, as well as distribution of crystal‐bearing idioblasts, have been studied for the first time in the bark of stone birch Betula ermanii from Sakhalin Island sampled in an area affected by mud volcanism and an unaffected typical forest environment taken for reference. The study addresses several issues (i) number and size of phytoliths and their distribution in different cell types; (ii) density of calcification in specific cells; (iii) habits of single crystals, twins, and complex intergrowths, as well as frequency of different morphologies and their relations. The trends of time‐dependent morphological changes in separately analyzed crystals and intergrowths record the evolution of COM morphology from nuclei to mature grains. Of special interest are the nucleation sites and features of organic and inorganic seeds and nuclei for COM phytoliths. The precipitation process and crystal habits are mainly controlled by supersaturation, and it is thus important to constrain the Ca distribution patterns in different bark tissues. The B. ermanii samples were analyzed by several methods: scanning electron microscopy (SEM) for the distribution patterns and micromorphology of COM precipitates and bulk Ca content in bark; electron probe microanalysis (EPMA) for the mineral chemistry of COM precipitates; inductively coupled plasma optical emission spectrometry (ICP‐OES) and inductively coupled plasma mass spectrometry (ICP‐MS) for trace elements in bulk bark and wood.Research Highlights The distribution and morphology of whewellite precipitates in the analyzed B. ermanii bark samples indicate that the aqueous solution was most strongly supersaturated with respect to the Ca(C2O4)·H2O solid phase at the parenchyma‐sclerenchyma boundary, where most of the COM spherulites are localized and often coexist with large single crystals and contact COM twins.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3