Affiliation:
1. School of Geography, Earth and Environmental Sciences, University of Birmingham Birmingham UK
Abstract
AbstractPseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non‐crocodylomorph pseudosuchians traditionally known as “rauisuchians.” Their large size (5–8+ m long) and morphological similarities to post‐Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three‐dimensionally well‐preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post‐Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015–1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth–bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post‐Triassic apex predators.
Subject
Ecology, Evolution, Behavior and Systematics,Histology,Biotechnology,Anatomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献