Pilot and data power optimization problems in multiple Aerial Relay Stations cell‐free communication systems

Author:

Duc Bui Anh1ORCID,Hoang Tran Manh2,Phuong Nguyen Thu1,Tran Xuan Nam1ORCID,Hiep Pham Thanh1

Affiliation:

1. Advanced Wireless Communications Group Le Quy Don Technical University Hanoi Vietnam

2. Radio Department Telecommunications University Khanh Hoa Vietnam

Abstract

SummaryA cell‐free (CF) technology and unmanned aerial vehicles (UAVs) acting as aerial relay stations (ARSs) are gradually viewed as viable technologies for usage in sixth‐generation (6G) wireless networks owing to their outstanding advantages, such as large coverage, uniform service quality, huge connections, flexible deployment in all geographical areas, and high line‐of‐sight (LoS) probability. As a result, the combination of the CF model and UAVs is suitable for densely populated urban areas, shopping malls, festivals, and locations with complex geography. Furthermore, the integration of the CF model and UAV communication can improve system quality and is considered an entirely new research direction as there is no comprehensive investigation of this combined model. In this study, we investigate the quality of the multi‐ARS CF communication system, where ARSs are equipped with multiple antennas and stochastic distribution within a specific region to simultaneously serve numerous ground users. We establish a closed‐form formulation for the uplink and downlink throughput of individual users by using the matched filtering method and conjugate beamforming technology, respectively. Moreover, we propose a novel method to optimize the pilot and data transmission power coefficients for improving channel estimation and increasing throughput per user, thereby ensuring a high quality of service. The power optimization method is executed via the successive convex approximation (SCA) method, second‐order cone program (SOCP), and linear program. We evaluate system performance according to the cumulative distribution function (CDF) of user throughput based on various parameters, such as the number of users, the number of ARSs, and the length of pilot sequences. The analytical findings also reveal that the system with the proposed power optimization method is always superior to the system without the proposed method in both uplink and downlink.

Funder

National Foundation for Science and Technology Development

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3