On pointwise second‐order maximum principle for optimal stochastic controls of general mean‐field type

Author:

Boukaf Samira12,Korichi Fatiha1,Hafayed Mokhtar1ORCID,Palanisamy Muthukumar3ORCID

Affiliation:

1. Laboratory of Mathematical Analysis, Probability and Optimizations University of Biskra Biskra Algeria

2. Department of Mathematics University Center Abdelhafid Boussouf Mila Algeria

3. The Gandhigram Rural Institute (Deemed to be University) Gandhigram India

Abstract

AbstractIn this paper, we establish a second‐order stochastic maximum principle for optimal stochastic control of stochastic differential equations of general mean‐field type. The coefficients of the system are nonlinear and depend on the state process as well as of its probability law. The control variable is allowed to enter into both drift and diffusion terms. We establish a set of second‐order necessary conditions for the optimal control in integral form. The control domain is assumed to be convex. The proof of our main result is based on the first‐ and second‐order derivatives with respect to the probability law and by using a convex perturbation with some appropriate estimates.

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Reference30 articles.

1. Foundations of kinetic theory;Kac M.;Proc. 3rd Berkeley Sympos. Math. Statist. Prob.,1956

2. A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS

3. M. M.Huang P.Caines andR.Malhamé Distributed multi‐agent decision making with partial observations: asymptotic Nash equilibria Inproceedings of the 17th International Symposiumon Mathematial Theory of Networks and Systems Kyoto Japan 2006 pp.2725–2730.

4. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle

5. Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3