Deep‐learning based fast and accurate 3D CT deformable image registration in lung cancer

Author:

Ding Yuzhen1,Feng Hongying1,Yang Yunze1,Holmes Jason1,Liu Zhengliang2,Liu David3,Wong William W.1,Yu Nathan Y.1,Sio Terence T.1,Schild Steven E.1,Li Baoxin4,Liu Wei1

Affiliation:

1. Department of Radiation Oncology Mayo Clinic Phoenix Arizona USA

2. Department of Computer Science University of Georgia Athens Georgia USA

3. Athens Academy Athens Georgia USA

4. School of Computing and Augmented Intelligence Arizona State University Tempe Arizona USA

Abstract

AbstractBackgroundDeformable Image Registration (DIR) is an essential technique required in many applications of radiation oncology. However, conventional DIR approaches typically take several minutes to register one pair of 3D CT images and the resulting deformable vector fields (DVFs) are only specific to the pair of images used, making it less appealing for clinical application.PurposeA deep‐learning‐based DIR method using CT images is proposed for lung cancer patients to address the common drawbacks of the conventional DIR approaches and in turn can accelerate the speed of related applications, such as contour propagation, dose deformation, adaptive radiotherapy (ART), etc.MethodsA deep neural network based on VoxelMorph was developed to generate DVFs using CT images collected from 114 lung cancer patients. Two models were trained with the weighted mean absolute error (wMAE) loss and structural similarity index matrix (SSIM) loss (optional) (i.e., the MAE model and the M+S model). In total, 192 pairs of initial CT (iCT) and verification CT (vCT) were included as a training dataset and the other independent 10 pairs of CTs were included as a testing dataset. The vCTs usually were taken 2 weeks after the iCTs. The synthetic CTs (sCTs) were generated by warping the vCTs according to the DVFs generated by the pre‐trained model. The image quality of the synthetic CTs was evaluated by measuring the similarity between the iCTs and the sCTs generated by the proposed methods and the conventional DIR approaches, respectively. Per‐voxel absolute CT‐number‐difference volume histogram (CDVH) and MAE were used as the evaluation metrics. The time to generate the sCTs was also recorded and compared quantitatively. Contours were propagated using the derived DVFs and evaluated with SSIM. Forward dose calculations were done on the sCTs and the corresponding iCTs. Dose volume histograms (DVHs) were generated based on dose distributions on both iCTs and sCTs generated by two models, respectively. The clinically relevant DVH indices were derived for comparison. The resulted dose distributions were also compared using 3D Gamma analysis with thresholds of 3 mm/3%/10% and 2 mm/2%/10%, respectively.ResultsThe two models (wMAE and M+S) achieved a speed of 263.7±163 / 265.8±190 ms and a MAE of 13.15±3.8 / 17.52±5.8 HU for the testing dataset, respectively. The average SSIM scores of 0.987±0.006 and 0.988±0.004 were achieved by the two proposed models, respectively. For both models, CDVH of a typical patient showed that less than 5% of the voxels had a per‐voxel absolute CT‐number‐difference larger than 55 HU. The dose distribution calculated based on a typical sCT showed differences of ≤2cGy[RBE] for clinical target volume (CTV) D95 and D5, within ±0.06% for total lung V5, ≤1.5cGy[RBE] for heart and esophagus Dmean, and ≤6cGy[RBE] for cord Dmax compared to the dose distribution calculated based on the iCT. The good average 3D Gamma passing rates (> 96% for 3 mm/3%/10% and > 94% for 2 mm/2%/10%, respectively) were also observed.ConclusionA deep neural network‐based DIR approach was proposed and has been shown to be reasonably accurate and efficient to register the initial CTs and verification CTs in lung cancer.

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3