The determination of optimum segmentation parameters using genetic algorithms: Application to different segmentation algorithms and transmission electron microscopy tomography reconstructed volumes

Author:

Fernandez Martinez Roberto1ORCID,Okariz Ana2,Iturrondobeitia Maider3,Ibarretxe Julen2

Affiliation:

1. Department of Electrical Engineering, College of Engineering in Bilbao University of the Basque Country UPV/EHU Bilbao Spain

2. Department of Applied Physics, College of Engineering in Bilbao University of the Basque Country UPV/EHU Bilbao Spain

3. Graphic Design and Project Engineering Department, College of Engineering in Bilbao University of the Basque Country UPV/EHU Bilbao Spain

Abstract

AbstractA method for optimizing an automatic selection of values for parameters that feed segmentation algorithms is proposed. Evolutionary optimization techniques in combination with a fitness function based on a mutual information parameter have been used to find the optimal parameter values of region growing, fuzzy c‐means and graph cut segmentation algorithms. To validate the method, the segmentation of two transmission electron microscopy tomography reconstructed volumes of a carbon black‐reinforced rubber and a polylactic acid and clay nanocomposite is carried out (i) using evolutionary optimization techniques and (ii) manually by experts. The results confirm that the use of evolutionary optimization techniques, such as genetic algorithms, reduces the computational operation cost needed for a total grid search of segmentation parameters, reducing the probability of reaching a false optimum, and improving the segmentation quality.Highlights A new approach to optimize 3D segmentation algorithms. Methodology to optimize segmentation parameters and improve segmentation quality. Improvement on the results when using region growing, fuzzy c‐means and graph cuts algorithms.

Funder

Eusko Jaurlaritza

University of California

Publisher

Wiley

Subject

Medical Laboratory Technology,Instrumentation,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3