Biogenic synthesis of silver nanoparticles using Funaria hygrometrica Hedw. and their effects on the growth of Zea mays seedlings

Author:

Karim Shaheen1,Kayani Sadaf1,Akhtar Wasim2,Fatima Iram3,Nazir Munazza2,Zaman Wajid4ORCID

Affiliation:

1. Department of Botany Mohi‐ud‐Din Islamic University Nerian Sharif Pakistan

2. Department of Botany University of Azad Jammu and Kashmir Muzaffarabad Pakistan

3. Department of Biotechnology Fatima Jinnah Women University Rawalpindi Pakistan

4. Department of Life Sciences Yeungnam University Gyeongsan Republic of Korea

Abstract

AbstractThe biogenic synthesis of silver nanoparticles (AgNPs) is an important step in developing eco‐friendly and environmentally stable tools for ameliorating crop growth. In the current study, AgNPs were synthesized using Funaria hygrometrica and characterized using ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X‐ray diffraction (XRD). The UV spectrum showed an absorption peak at 450 nm. SEM revealed an irregular and spherical morphology, FTIR spectroscopy indicated the presence of various functional groups, while XRD displayed peaks at 45.24°, 38.17°, 44.34°, 64.54°, and 57.48° 2θ. The effects of the F. hygrometrica‐mediated AgNPs on maize growth and germination were assessed at 0, 100, 300, and 500 ppm. The germination percentage and relative germination rate were increased to 95% ± 1.83% and 100% ± 2.48% at 100 ppm of synthesized AgNPs and then declined at 300 and 500 ppm. The length, fresh weight, and dry matter of the root, shoot, and seedlings were highest at 100 ppm NPs. The plant height, root length, and dry matter stress tolerance indices were also the highest (112.3%, 118.7%, and 138.20% compared with the control) at 100 ppm AgNPs. Moreover, the growth of three maize varieties, that is, NR‐429, NR‐449, and Borlog, were assessed at 0, 20, 40, and 60 ppm F. hygrometrica‐AgNPs. The results indicated the highest root and shoot length at 20 ppm AgNPs. In conclusion, seed priming with AgNPs enhances the growth and germination of maize and can ameliorate crop production globally.Research Highlights Funaria hygrometrica Hedw.‐mediated AgNPs were synthesized and characterized. Biogenic AgNPs influenced the growth and germination of maize seedlings. All growth parameters were highest at 100 ppm synthesized NPs.

Publisher

Wiley

Subject

Medical Laboratory Technology,Instrumentation,Histology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3