Single‐subject electroencephalography measurement of interhemispheric transfer time for the in‐vivo estimation of axonal morphology

Author:

Oliveira Rita1ORCID,De Lucia Marzia1ORCID,Lutti Antoine1ORCID

Affiliation:

1. Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience Lausanne University Hospital and University of Lausanne Lausanne Switzerland

Abstract

AbstractAssessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μmα. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates.

Funder

Fondation Roger de Spoelberch

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3