Neuronal activity‐related transcription is blunted in immature compared to mature dentate granule cells

Author:

Parylak Sarah L.1,Qiu Fan1,Linker Sara B.1,Gallina Iryna S.1,Lim Christina K.1,Preciado David1,McDonald Aidan H.1,Zhou Xavier1,Gage Fred H.1ORCID

Affiliation:

1. Laboratory of Genetics The Salk Institute for Biological Studies La Jolla California USA

Abstract

AbstractImmature dentate granule cells (DGCs) generated in the hippocampus during adulthood are believed to play a unique role in dentate gyrus (DG) function. Although immature DGCs have hyperexcitable membrane properties in vitro, the consequences of this hyperexcitability in vivo remain unclear. In particular, the relationship between experiences that activate the DG, such as exploration of a novel environment (NE), and downstream molecular processes that modify DG circuitry in response to cellular activation is unknown in this cell population. We first performed quantification of immediate early gene (IEG) proteins in immature (5‐week‐old) and mature (13‐week‐old) DGCs from mice exposed to a NE. Paradoxically, we observed lower IEG protein expression in hyperexcitable immature DGCs. We then isolated nuclei from active and inactive immature DGCs and performed single‐nuclei RNA‐Sequencing. Compared to mature nuclei collected from the same animal, immature DGC nuclei showed less activity‐induced transcriptional change, even though they were classified as active based on expression of ARC protein. These results demonstrate that the coupling of spatial exploration, cellular activation, and transcriptional change differs between immature and mature DGCs, with blunted activity‐induced changes in immature cells.

Funder

Brinson Foundation

JPB Foundation

National Institute of Mental Health

Paul G. Allen Frontiers Group

Waitt Foundation

Mary K. Chapman Foundation

Leona M. and Harry B. Helmsley Charitable Trust

Publisher

Wiley

Subject

Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3