Hippocampal spatial view cells, place cells, and concept cells: View representations

Author:

Rolls Edmund T.12ORCID

Affiliation:

1. Oxford Centre for Computational Neuroscience Oxford UK

2. Department of Computer Science University of Warwick Coventry UK

Abstract

AbstractA commentary is provided on issues raised in the Special Issue of Hippocampus (2023) on hippocampal system view representations. First, the evidence for hippocampal and parahippocampal spatial view cells in primates including humans shows that the allocentric representations provided by at least some of these cells are very useful for human memory in that where objects and rewards are seen in the world “out there” is a key component of episodic memory and navigation. Spatial view cell representations provide for memory and navigation to be independent of the place where the individual is currently located and of the egocentric coordinates of the viewed location and the facing direction of the individual. Second, memory and navigation in humans are normally related to the visual cues encoded by spatial view cells that define a location “out there” such as a building, hill, and so forth, not to an unmarked place without local cues and identified only by distant environmental/room cues. Third, “mixed” representations, for example of particular combinations of spatial view and place, can arise if the training has been for only some combinations of place and view, for that is what can then be learned by the hippocampus. Fourth, rodents, with their much less good visual acuity (~1 cycle/° in rats, compared with ~60 cycles/° for the human fovea), and rodents' very wide viewing angle for the world (~270°) might be expected, when using the same computational mechanisms as in primates, to use widely spaced environmental cues to define a place where the rodent is located, supported by inputs about place using local olfactory and tactile cues. Fifth, it is shown how view‐point dependent allocentric representations could form a view‐point independent allocentric representation for memory and navigation. Sixth, concept cells in humans and primates with connectivity to the hippocampus are compared.

Publisher

Wiley

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3