Airfoil inverse design based on laminar compressible adjoint lattice Boltzmann method

Author:

Jalali Khouzani H.1,Kamali‐Moghadam R.1ORCID

Affiliation:

1. A & S Research Institute (Ministry of Science, Research and Technology) Tehran Iran

Abstract

AbstractA new optimization techniques based on the adjoint lattice Boltzmann method is derived for airfoil inverse design in laminar compressible flows. In this study, the developed adjoint lattice Boltzmann scheme based on the circular function (CF) is extended for airfoil inverse design problems in laminar incompressible and compressible flows. New mathematical derivation based on compressible lattice Boltzmann equations (LBE) is developed which can find target shape of an airfoil with available desired pressure distribution. The adjoint lattice Boltzmann method is extended for both the incompressible and compressible flows by selecting the circular function idea for calculating the equilibrium distribution functions. So, the adjoint equation is also expanded based on CF idea for calculation of objective function gradient vector. The steepest decent technique is utilized as gradient optimizer. Also, a novel solution is presented to remove singularity problem of the adjoint boundary condition. In order to validate the developed optimization algorithm, results are presented for both incompressible and compressible inverse problem in steady and unsteady flow and accurate results are obtained.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3