Molecular mechanisms of oxidative stress‐related neonatal jaundice

Author:

Perrone Serafina1ORCID,Lembo Chiara2ORCID,Giordano Maurizio3,Petrolini Chiara1,Cannavò Laura4,Gitto Eloisa4

Affiliation:

1. Department of Medicine and Surgery, Neonatology Unit, 'Azienda Ospedaliero Universitaria di Parma University of Parma Parma Italy

2. Department of Molecular and Developmental Medicine University of Siena Siena Italy

3. Department of Clinical Medicine and Surgery Federico II University Naples Italy

4. Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi” University of Messina Messina Italy

Abstract

AbstractOxidative stress is a pathological condition characterized by an overload of oxidant products, named free radicals, which are not well counteracted by antioxidant systems. Free radicals induce oxidative damage to many body organs and systems. In neonatal red blood cells, free‐radical mediated‐oxidative stress leads to eryptosis, a suicidal death process of erythrocytes consequent to alteration of cell integrity. Neonatal red blood cells are targets and at the same time generators of free radicals through the Fenton and Haber‐Weiss reactions. Enhanced eryptosis in case of oxidative stress damage may cause anemia if the increased loss of erythrocytes is not enough compensated by enhanced new erythrocytes synthesis. The oxidative disruption of the red cells may cause unconjugated idiopathic hyperbilirubinemia in neonates. High levels of bilirubin are recognized to be dangerous for the central nervous system in newborns, however, many studies have highlighted the antioxidant function of bilirubin. Recently, it has been suggested that physiologic concentration of bilirubin correlates with higher antioxidant status while high pathological bilirubin levels are associated with pro‐oxidants effects. The aim of this educational review is to provide an updated understanding of the molecular mechanisms underlying erythrocyte oxidant injury and its reversal in neonatal idiopathic hyperbilirubinemia.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3