Fast constrained optimization for cloth simulation parameters from static drapes

Author:

Ju Eunjung1,Shim Eungjune1,Kim Kwang‐yun1,Yoon Sungjin1,Choi Myung Geol2ORCID

Affiliation:

1. CLO Virtual Fashion Inc. Seoul South Korea

2. Digital Media Department The Catholic University of Korea Bucheon South Korea

Abstract

AbstractWe present a cloth simulation parameter estimation method that integrates the flexibility of global optimization with the speed of neural networks. While global optimization allows for varied designs in objective functions and specifying the range of optimization variables, it requires thousands of objective function evaluations. Each evaluation, which involves a cloth simulation, is computationally demanding and impractical time‐wise. On the other hand, neural network learning methods offer quick estimation results but face challenges such as the need for data collection, re‐training when input data formats change, and difficulties in setting constraints on variable ranges. Our proposed method addresses these issues by replacing the simulation process, typically necessary for objective function evaluations in global optimization, with a neural network for inference. We demonstrate that, once an estimation model is trained, optimization for various objective functions becomes straightforward. Moreover, we illustrate that it is possible to achieve optimization results that reflect the intentions of expert users through visualization of a wide optimization space and the use of range constraints.

Publisher

Wiley

Reference46 articles.

1. KuijpersS Luible‐BärC GongH.The measurement of fabric properties for virtual simulation—a critical review. IEEE Standards Association Industry Connections Report 1‐43.2020.

2. Estimating Cloth Simulation Parameters From a Static Drape Using Neural Networks

3. Learning-Based Bending Stiffness Parameter Estimation by a Drape Tester

4. Rodriguez‐PardoC Prieto‐MartinM CasasD GarcesE.How will it drape like? Capturing fabric mechanics from depth images. arXiv Preprint arXiv:230406704.2023.

5. Interactive exploration of drapes by simulation parameters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3