Reliability modeling of dependent competing failure processes based on time‐dependent threshold level δ and degradation rate changes

Author:

Lyu Hao1,Ma Li1ORCID,Qu Hongchen1ORCID,Yang Zaiyou1ORCID,Jiang Yuliang1,Lu Bing1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation Northeastern University Shenyang China

Abstract

AbstractA new reliability model for dependent competing failure processes is proposed. The reliability model uses the generalized Polya process (GPP) to model the arrival of shocks and considers the degradation rate change. Most systems fail due to performance degradation and external environment shocks. On the one hand, soft failure occurs when the total amount of degradation, including continuous degradation and sudden degenerate increment, exceeds the soft failure threshold level. On the other hand, hard failure occurs when the time interval between two successive shocks is less than the recovery time. As time progresses and natural degradation, the time for a system to recover from damage due to shocks tends to increase gradually. However, conventional models usually regard recovery time as a constant, unrealistic in many practical situations. For this purpose, an increment‐dependent shock process is considered. A hard failure reliability model with recovery time is calculated using the GPP to describe the shock arrival process. On this basis, combined with the deduced soft failure function, the analytical solution of the reliability model is obtained. Finally, a numerical example based on the micro‐electro mechanical systems is conducted to illustrate the effectiveness of the proposed model.

Publisher

Wiley

Subject

Management Science and Operations Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3