Affiliation:
1. Department of Chemistry Johannes Gutenberg University Mainz Germany
Abstract
AbstractThe statistical anionic copolymerization of 4‐trimethylsilylstyrene (TMSS) with isoprene (I) in cyclohexane was investigated using in situ near‐infrared (NIR) spectroscopy in the presence of various amounts of the polar modifier tetrahydrofuran (THF). Polymers with narrow molecular weight distribution of 85–138 kg/mol and dispersities of 1.09–1.22 were obtained. By increasing modifier content, the reactivity ratios can be adjusted over a wide range from rTMSS < rI to rTMSS >> rI. Compared to the system styrene/isoprene (S/I) only a minute amount of modifier (0.5 eq THF relative to lithium) is sufficient to alter the reactivity ratios, resulting in an ideally random copolymerization, which validates the higher reactivity of TMSS compared to styrene. Using these reactivity ratios, molar and volume composition gradients were calculated. Additionally, the glass transition temperature and microstructure of the polyisoprene units were investigated via differential scanning calorimetry and proton nuclear magnetic resonance. The results are encouraging for the use of these materials in high‐end applications like membranes.