Seismic Design of Non‐Structural Components in Industrial Facilities – a Discussion of the EC8 Approach

Author:

Knoedel Peter1

Affiliation:

1. Engineering Consultants Ebersteinburger Str. 9 76530 Baden‐Baden Germany

Abstract

AbstractIn industrial facilities, equipment such as production machines, small vessels, conveyors and piping are installed at various elevations of the (building‐) structure. In seismic design, this equipment (referred to as non‐structural components) should be considered integrally with the structure in order to capture the resulting dynamic behaviour of the system adequately.However, the typical procedure in plant construction is to design the structure in a previous step, where masses of the equipment are introduced only by a rough estimate, and stiffnesses of the equipment are ignored. The seismic design of individual non‐structural components is done in a subsequent step and typically by the respective supplier of the component. He often does know little about the characteristics of the structure – mostly not even the natural frequency. If the equipment is to be installed in an existing structure (e.g. due to changes in the production process or exchange of components) or if existing components have to be re‐verified (e.g. due to new seismic design loads at site), it may be difficult to define the dynamic characteristics of the possibly many years old load‐bearing structure.In Eurocode 8‐1 as in many other design codes, rules for the design of non‐structural components are given. However, some of these do not seem to be in accordance with mechanics or seem to be based on hidden assumptions. In any case the designer is left with what is felt to be an unsatisfactory design result, which cannot be retraced by the designer.In the present paper, the structural behavior of typical non‐structural components is investigated: a silo on a structural grid, an elevated tube‐feet tank, and piping. For these, the dynamic behaviour is investigated, when built in a typical plant structure. The findings are compared with the design rules given in EC8‐1. Improvement of the rules towards better understanding of the mechanical background or better ease of use will be proposed.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference17 articles.

1. Holtschoppen B.(2009)Beitrag zur Auslegung von Industrieanlagen auf seismische Belastungen. PhD RWTH Aachen.

2. Seismic Design of Non‐Structural Components in Industrial Facilities;Holtschoppen B.;International Journal of Engineering Under Uncertainty: Hazards, Assessment and Mitigation,2009

3. EN 1990 (EC0): 2002 + A1: 2005 + A1: 2005/AC:2010 Eurocode 0: Basis of structural design.

4. EN 1998 (EC8): 2004 + AC: 2009Design of structures for earthquake resistance. Part 1: General rules seismic actions and rules for buildings; A1 Amendment.May2013.

5. EN 1090: 2018Execution of steel structures and aluminium structures. Part 2: Technical requirements for steel structures.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3