Optimization of ultrasonic Bath and cold plasma pre‐treatments in the spearmint essential oil isolation process

Author:

Moradi‐Sadr Jalil1ORCID,Ebadi Mohammad‐Taghi1ORCID,Ayyari Mahdi1ORCID,Ghomi Hamidreza2ORCID

Affiliation:

1. Department of Horticultural Sciences Tarbiat Modares University Tehran Iran

2. Laser and Plasma Research Institute Shahid Beheshti University Tehran Iran

Abstract

AbstractSpearmint essential oil (SEO), one of the economically valuable natural products, has special importance in the food, pharmaceutical, and perfumery industries due to its antifungal, antioxidant, and enzyme inhibitory properties. In this study, we optimized and evaluated the effect of three pre‐treatments on the extraction of SEO for quantity and quality: ultrasonic bath (UB), water to material ratio‐ultrasonic bath (W/M‐UB), and cold plasma‐ultrasonic bath (CP‐UB). Three experiments were designed using the central composite design (CCD) of response surface methodology (RSM). Experimental treatments included UB temperature (30–80°C) and time duration (1–30 min), cold plasma (CP) power (15–24 kV), and water/material ratio (10–40). Then, SEOs were extracted by hydro‐distillation using the Clevenger apparatus. The results showed that SEO yield in the optimal conditions of treatments was 119.7%, 206.6%, and 155.7% higher in UB, W/M‐UB, and CP‐UB pretreatments respectively, in comparison to control sample and optimized conditions were UB temperature: 37.3°C and UB time: 5.2 min at UB treatment, 33.9 of W/M ratio, 69.9°C of UB temperature and 6.9 min of UB time at W/M‐UB treatment and CP power: 22.176, UB temperature: 40.135 and UB time: 24.122 at CP‐UB treatment. Oxygenated monoterpenes were also higher in the essential oils (EOs) of all three treated plant materials. In conclusion, the SEO extraction yield improved by the application of the pretreatments in optimized conditions.

Funder

Tarbiat Modares University

Publisher

Wiley

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3