Applying machine learning to identify pediatric patients with newly diagnosed acute lymphoblastic leukemia using administrative data

Author:

Cao Lusha1ORCID,Huang Yuan‐shung1ORCID,Getz Kelly D.23,Seif Alix E.34,Ruiz Jenny56ORCID,Miller Tamara P.78ORCID,Fisher Brian T.249,Aplenc Richard234,Li Yimei234

Affiliation:

1. Department of Biomedical and Health Informatics The Children's Hospital of Philadelphia Philadelphia Pennsylvania USA

2. Department of Biostatistics, Epidemioloy and Informatics Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA

3. Division of Oncology The Children's Hospital of Philadelphia Philadelphia Pennsylvania USA

4. Department of Pediatrics Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA

5. Department of Pediatrics University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

6. Division of Hematology‐Oncology Children's Hospital of Pittsburgh Pittsburgh Pennsylvania USA

7. Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA

8. Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta Atlanta Georgia USA

9. Division of Infectious Diseases The Children's Hospital of Philadelphia Philadelphia Pennsylvania USA

Abstract

AbstractCase identification in administrative databases is challenging as diagnosis codes alone are not adequate for case ascertainment. We utilized machine learning (ML) to efficiently identify pediatric patients with newly diagnosed acute lymphoblastic leukemia. We tested nine ML models and validated the best model internally and externally. The optimal model had 97% positive predictive value (PPV) and 99% sensitivity in internal validation; 94% PPV and 82% sensitivity in external validation. Our ML model identified a large cohort of 21,044 patients, demonstrating an efficient approach for cohort assembly and enhancing the usability of administrative data.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3