A linear finite difference scheme with error analysis designed to preserve the structure of the 2D Boussinesq paradigm equation

Author:

Poochinapan K.12ORCID,Manorot P.2,Mouktonglang T.12,Wongsaijai B.12ORCID

Affiliation:

1. Advanced Research Center for Computational Simulation Chiang Mai University Chiang Mai Thailand

2. Department of Mathematics Faculty of Science, Chiang Mai University Chiang Mai Thailand

Abstract

AbstractUse of the finite difference method has produced successful solutions to the general partial differential equations due to its efficiency and effectiveness with wide applications. For example, the 2D Boussinesq paradigm equation can be numerically studied using a linear‐implicit finite difference scheme based on the Crank‐Nicolson/Adams‐Bashforth technique. First, conservative quantities are derived and preserved through numerical scheme. Then, the convergence and stability analysis is then provided to simulate a numerical solution whose existence and uniqueness are proved based on the boundedness of the numerical solution. Analysis of spatial accuracy is found to be second order on a uniform grid. Numerical results from simulations indicate that these proposed scheme provide satisfactory second‐order accuracy both in time and space with an ‐norm, and also preserve discrete invariants. Additionally, previous scientific literature review has provided little evidence of studied terms with dispersive effect in 2D Boussinesq paradigm equation. The current study explores solution behavior by applying the proposed scheme to numerically analyze initial Gaussian condition.

Funder

Chiang Mai University

Publisher

Wiley

Reference56 articles.

1. Stability of solitary waves in shallow water

2. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq J.;J. Math. Pures Appl.,1872

3. Local structure-preserving algorithms for the “good” Boussinesq equation

4. Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the “good” Boussinesq equation;Chen J. B.;Appl. Math. Comput.,2005

5. Central-Upwind Schemes for Boussinesq Paradigm Equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3