Affiliation:
1. School of Mathematical Sciences and MOE‐LSC Shanghai Jiao Tong University Shanghai China
2. Department of Mathematics University of South Carolina Columbia South Carolina USA
Abstract
AbstractIn this article, we present a parareal exponential finite element method, with the help of variational formulation and parareal framework, for solving semilinear parabolic equations in rectangular domains. The model equation is first discretized in space using the finite element method with continuous piecewise multilinear rectangular basis functions, producing the semi‐discrete system. We then discretize the temporal direction using the explicit exponential Runge–Kutta approach accompanied by the parareal framework, resulting in the fully‐discrete numerical scheme. To further improve computational speed, we design a fast solver for our method based on tensor product spectral decomposition and fast Fourier transform. Under certain regularity assumption, we successfully derive optimal error estimates for the proposed parallel‐based method with respect to ‐norm. Extensive numerical experiments in two and three dimensions are also carried out to validate the theoretical results and demonstrate the performance of our method.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Science Foundation