Picture Perfect: The Status of Image Quality in Prostate MRI

Author:

Woernle Alexandre12,Englman Cameron23,Dickinson Louise2,Kirkham Alex2,Punwani Shonit24,Haider Aiman5,Freeman Alex5,Kasivisivanathan Veeru36,Emberton Mark36,Hines John167,Moore Caroline M.36,Allen Clare2,Giganti Francesco23ORCID

Affiliation:

1. Faculty of Medical Sciences University College London London UK

2. Department of Radiology University College London Hospital NHS Foundation Trust London UK

3. Division of Surgery & Interventional Science University College London London UK

4. Centre for Medical Imaging University College London London UK

5. Department of Pathology University College London Hospital NHS Foundation Trust London UK

6. Department of Urology University College London Hospital NHS Foundation Trust London UK

7. North East London Cancer Alliance & North Central London Cancer Alliance Urology London UK

Abstract

Magnetic resonance imaging is the gold standard imaging modality for the diagnosis of prostate cancer (PCa). Image quality is a fundamental prerequisite for the ability to detect clinically significant disease. In this critical review, we separate the issue of image quality into quality improvement and quality assessment. Beginning with the evolution of technical recommendations for scan acquisition, we investigate the role of patient preparation, scanner factors, and more advanced sequences, including those featuring Artificial Intelligence (AI), in determining image quality. As means of quality appraisal, the published literature on scoring systems (including the Prostate Imaging Quality score), is evaluated. Finally, the application of AI and teaching courses as ways to facilitate quality assessment are discussed, encouraging the implementation of future image quality initiatives along the PCa diagnostic and monitoring pathway.Evidence Level3Technical EfficacyStage 3

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3