Global 24 solar terms phenological MODIS normalized difference vegetation index dataset in 2001–2022

Author:

Yang Jingyu1ORCID,Wu Taixia1,Sun Xiying12,Liu Kai3,Farhan Muhammad1,Zhao Xuan1,Gao Quanshan1,Yang Yingying1,Shao Yuhan1,Wang Shudong4

Affiliation:

1. School of Earth Sciences and Engineering Hohai University Nanjing China

2. Geological Exploration Technology Institution of Jiangsu Province Nanjing China

3. Key Laboratory of Water Cycle & Related Land Surface Processes Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences Beijing China

4. Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

Abstract

AbstractPhenology reflects the life cycle of vegetation, crucial for monitoring global vegetation diversity, ecosystem stability, and agricultural security. However, there is currently no dataset related to phenology. The 24 solar terms (24STs), based on the Sun's annual motion, reflect the changing seasons, temperature fluctuations, and phenological phenomena. They serve as a vital means to characterize vegetation phenology. This study generate a global Normalized Difference Vegetation Index (NDVI) product based on 24STs using Moderate Resolution Imaging Spectroradiometer (MODIS) on the Google Earth Engine (GEE). The 24STs NDVI dataset adopted the maximum value compositing (MVC) to process the NDVI values between two adjacent 24STs. The product has a spatial resolution of 250 m, covering the period from 2001 to 2022. Comparing with the MOD13Q1, good spatiotemporal consistency between the two datasets was observed, confirming the reliability of the 24STs product. However, the 24STs product holds distinct phenological meanings. This product introduces, for the first time, a vegetation index dataset based on the 24STs, enriching the vegetation index dataset and facilitating further research on phenology.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3