Facile preparation of alkali metal‐modified hollow nanotubular manganese‐based oxide catalysts and their excellent catalytic soot combustion performance

Author:

Zhang Chunlei1,Gao Siyu2,Chen Xinyu2,Yu Di1,Wang Lanyi2,Fan Xiaoqiang2,Cheng Ying3,Yu Xuehua2ORCID,Zhao Zhen12

Affiliation:

1. State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing China

2. Institute of Catalysis for Energy and Environment College of Chemistry and Chemical Engineering Shenyang Normal University Shenyang Liaoning China

3. Department of Environmental Engineering Hebei University of Environmental Engineering Qinhuangdao Hebei China

Abstract

AbstractThe soot emitted during the operation of diesel engine exhaust seriously threatens the human health and environment, so treating diesel engine exhaust is critical. At present, the most effective method for eliminating soot particles is post‐treatment technology. Preparation of economically viable and highly active soot combustion catalysts is a pivotal element of post‐treatment technology. In this study, different single‐metal oxide catalysts with fibrous structures and alkali metal‐modified hollow nanotubular Mn‐based oxide catalysts were synthesized using centrifugal spinning method. Activity evaluation results showed that the manganese oxide catalyst has the best catalytic activity among the prepared single‐metal oxide catalysts. Further research on alkali metal modification showed that doping alkali metals is beneficial for improving the oxidation state of manganese and generating a large number of reactive oxygen species. Combined with the structural effect brought by the hollow nanotube structure, the alkali metal‐modified Mn‐based oxide catalysts exhibit superior catalytic performance. Among them, the Cs‐modified Mn‐based oxide catalyst exhibits the best catalytic performance because of its rich active oxygen species, excellent NO oxidation ability, abundant Mn4+ ions (Mn4+/Mnn+ = 64.78%), and good redox ability. The T10, T50, T90, and CO2 selectivity of the Cs‐modified Mn‐based oxide catalyst were 267°C, 324°C, 360°C, and 97.8%, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3