A higher order stable numerical approximation for time‐fractional non‐linear Kuramoto–Sivashinsky equation based on quintic B‐‐spline

Author:

Choudhary Renu1ORCID,Singh Satpal1ORCID,Das Pratibhamoy2ORCID,Kumar Devendra1ORCID

Affiliation:

1. Department of Mathematics, Birla Institute of Technology and Science Pilani India

2. Department of Mathematics, Indian Institute of Technology Patna India

Abstract

This article deals with designing and analyzing a higher order stable numerical analysis for the time‐fractional Kuramoto–Sivashinsky (K‐S) equation, which is a fourth‐order non‐linear equation. The fractional derivative of order present in the considered problem is taken into Caputo sense and approximated using the scheme. In space direction, the discretization process uses quintic ‐spline functions to approximate the derivatives and the solution of the problem. The present approach is unconditionally stable and is convergent with rate of accuracy , where and denote the space and time step sizes, respectively. We have also noted that the linearized version of the K‐S equation leads the rate of accuracy to . The present approach is also highly effective for the time‐fractional Burgers' equation. We have shown that the present approach provides better accuracy than the scheme with the same computational cost for several linear/non‐linear problems, with classical as well as fractional time derivatives.

Publisher

Wiley

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3