Affiliation:
1. Mechanical Design and Production Engineering Department, Faculty of Engineering Zagazig University Zagazig Al‐Sharqia Egypt
2. Mechanical Department Higher Technological Institute Tenth of Ramadan City Egypt
3. Mechanical Engineering Department, College of Engineering at Wadi Addawaser Prince Sattam Bin Abdulaziz University Wadi ad dawasir Saudi Arabia
Abstract
AbstractThis study explores the application of abrasive waterjet drilling (AWJD) for varied patterns of GF/Al mesh hybrid composites (neat glass NG, AG: Al in the exterior surface, and GA: Al in the center). Key parameters such as jet pressure (P), standoff distance (S), and traverse speed (V) are systematically varied, influencing material removal rate (MRR), hole taper ratio (), and roundness error (). Employing a Taguchi approach with an L9 design. It was indicated that the optimal conditions for maximum MRR are (P: 150 MPa, S: 2 mm, and V: 900 mm/min). V and S are the main influential parameters on and . Gray relational analysis (GRA) is employed for simultaneous optimization, enhancing drilling performance. The optimal parameters P of 150 MPa, S of 2 mm, and V of 300 mm/min are determined. Validation trials confirm the effectiveness of the determined parameters. A robust multiple regression equation is formulated, providing a predictive model that aligns closely with experimental observations.Highlights
The hybrid composites were drilled via a nontraditional process.
The attributes of the hole geometry and the material removal impacts were studied.
Operation parameters were optimized to improve MRR, , and .
A multiple regression model and a confirmation test were performed and validated.
Funder
Prince Sattam bin Abdulaziz University
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献