Significance of modes in the torus by topological data analysis

Author:

Yu Changjo1,Jung Sungkyu1ORCID,Kim Jisu123

Affiliation:

1. Department of Statistics Seoul National University Seoul Republic of Korea

2. DataShape Team Inria Saclay Palaiseau France

3. Laboratoire de Mathématiques d'Orsay Université Paris‐Saclay Orsay France

Abstract

AbstractThis paper addresses the problem of identifying modes or density bumps in multivariate angular or circular data, which have diverse applications in fields like medicine, biology and physics. We focus on the use of topological data analysis and persistent homology for this task. Specifically, we extend the methods for uncertainty quantification in the context of a torus sample space, where circular data lie. To achieve this, we employ two types of density estimators, namely, the von Mises kernel density estimator and the von Mises mixture model, to compute persistent homology, and propose a scale‐space view for searching significant bumps in the density. The results of bump hunting are summarised and visualised through a scale‐space diagram. Our approach using the mixture model for persistent homology offers advantages over conventional methods, allowing for dendrogram visualisation of components and identification of mode locations. For testing whether a detected mode is really there, we propose several inference tools based on bootstrap resampling and concentration inequalities, establishing their theoretical applicability. Experimental results on SARS‐CoV‐2 spike glycoprotein torsion angle data demonstrate the effectiveness of our proposed methods in practice.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference27 articles.

1. Topology and data

2. Robust topological inference: Distance to a measure and kernel distance;Chazal F.;Journal of Machine Learning Research,2018

3. Stability of Persistence Diagrams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3