Minimal purification method enables developability assessment of recombinant proteins

Author:

Rodriguez‐Aponte Sergio A.12ORCID,Naranjo Christopher A.2,Johnston Ryan S.2,Dalvie Neil C.23ORCID,Crowell Laura E.23ORCID,Bajoria Sakshi4,Kumru Ozan S.4,Joshi Sangeeta B.4,Volkin David B.4,Love J. Christopher235ORCID

Affiliation:

1. Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

2. The Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts USA

3. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

4. Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center University of Kansas Lawrence Kansas USA

5. Ragon Institute of MGH MIT, and Harvard Cambridge Massachusetts USA

Abstract

AbstractAnalytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two‐stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q‐membrane filter and we demonstrate sufficient removal of key supernatant impurities including host‐cell proteins (HCPs) and DNA with yields of 1–2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS‐CoV‐2 subunit protein antigen and compared the purified protein to a conventional two‐step chromatographic process. We then applied this method to compare several SARS‐CoV‐2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single‐domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early‐stage protein therapeutics and vaccine candidates produced in K. phaffii.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3