Affiliation:
1. Center for Medical Genetics Gansu Provincial Maternity and Child Care Hospital, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases Lanzhou China
2. School of Public Health Gansu University of Chinese Medicine Lanzhou China
3. Center for Early Childhood Development Gansu Provincial Maternity and Child‐Care Hospital Lanzhou China
Abstract
AbstractBackgroundImmune skeletal dysplasia with neurodevelopmental abnormalities (ISDNA) is an extremely rare, autosomal recessive genetic disorder characterized by various skeletal abnormalities, neurodevelopmental deficits, and abnormal immune system function. ISDNA is caused by variation in the exostosin‐like 3 (EXTL3) gene, located on chromosome 8p21.2, whose primary function is the biosynthesis of heparan sulfate (HS) skeleton structure. Only a few variations in the EXTL3 gene have been discovered so far. In these years of development, many pathogenic variants in genetic diseases with genetic and phenotypic heterogeneity have been investigated using whole‐exome sequencing (WES) technology.MethodsIn this research, a novel EXTL3 variant was first detected in a patient using WES, which was validated from Sanger sequencing in this family. Family history and clinical information were then collected through comprehensive medical examinations and genetic counseling. In silico prediction was then utilized to confirm the pathogenicity of the variant.ResultsA novel homozygous variant, NM_001440: c.2015G>A (p.Arg672Gln) in the EXTL3 gene, was identified using WES, which has never been reported before. Sanger sequencing was performed to confirm that the variant segregated with the disease within the family.ConclusionThis research identified a novel pathogenic variant in the EXTL3 gene responsible for ISDNA in a Chinese family. It showed the potential diagnostic role of WES in ISDNA, expanded the EXTL3 gene variation spectrum, and demonstrated that the diagnosis of ISDNA using WES is feasible and effective. More comprehensive genetic counseling and precise prenatal diagnosis for the next pregnancy can also be provided to families with genetic disorders.
Subject
Genetics (clinical),Genetics,Molecular Biology