A Putative Role for the Immunoproteasome in the Maintenance of Pluripotency in Human Embryonic Stem Cells

Author:

Atkinson Stuart P.12,Collin Joseph1,Irina Neganova1,Anyfantis George1,Kyung Bo Kim3,Lako Majlinda1,Armstrong Lyle1

Affiliation:

1. Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom

2. Epigenetic Architecture Group, Centro de Investigacion Principe Felipe, Valencia, Spain

3. Department of Pharmaceutical Science, University of Kentucky, Lexington, Kentucky, USA

Abstract

Abstract The function of the proteasome is essential for maintenance of cellular homeostasis, and in pluripotent stem cells, this has been extended to the removal of nascent proteins in a manner that restricts differentiation. In this study, we show enhanced expression of genes encoding subunits of the 20S proteasome in human embryonic stem cells (hESCs) coupled to their downregulation as the cells progress into differentiation. The decrease in expression is particularly marked for the alternative catalytic subunits of the 20S proteasome variant known as the immunoproteasome indicating the possibility of a hitherto unknown function for this proteasome variant in pluripotent cells. The immunoproteasome is normally associated with antigen-presenting cells where it provides peptides of an appropriate length for antibody generation; however, our data suggest that it may be involved in maintaining the pluripotency in hESCs. Selective inhibition of two immunoproteasome subunits (PSMB9 and PSMB8) results in downregulation of cell surface and transcriptional markers that characterize the pluripotent state, subtle cell accumulation in G1 at the expense of S-phase, and upregulation of various markers characterizing the differentiated primitive and definitive lineages arising from hESC. Our data also support a different function for each of these two subunits in hESC that may be linked to their selectivity in driving proteasome-mediated degradation of cell cycle regulatory components and/or differentiation inducing factors.

Funder

Newcastle University, Conselleria de Sanidad

Generalitat Valenciana

Instituto de Salud Carlos III

Ministry of Science and Innovation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3