Real‐time imaging of intracellular deformation dynamics in vibrated adherent cell cultures

Author:

Shiraishi Toshihiko1ORCID,Sato Katsuya1

Affiliation:

1. Division of Artificial Environment and Information Graduate School of Environment and Information Sciences, Yokohama National University Yokohama Japan

Abstract

AbstractMechanical vibration has been shown to regulate cell proliferation and differentiation in vitro and in vivo. However, the mechanism of its cellular mechanotransduction remains unclear. Although the measurement of intracellular deformation dynamics under mechanical vibration could reveal more detailed mechanisms, corroborating experimental evidence is lacking due to technical difficulties. In this study, we aimed to propose a real‐time imaging method of intracellular structure deformation dynamics in vibrated adherent cell cultures and investigate whether organelles such as actin filaments connected to a nucleus and the nucleus itself show deformation under horizontal mechanical vibration. The proposed real‐time imaging was achieved by conducting vibration isolation and making design improvements to the experimental setup; using a high‐speed and high‐sensitivity camera with a global shutter; and reducing image blur using a stroboscope technique. Using our system, we successfully produced the first experimental report on the existence of the deformation of organelles connected to a nucleus and the nucleus itself under horizontal mechanical vibration. Furthermore, the intracellular deformation difference between HeLa and MC3T3‐E1 cells measured under horizontal mechanical vibration agrees with the prediction of their intracellular structure based on the mechanical vibration theory. These results provide new findings about the cellular mechanotransduction mechanism under mechanical vibration.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3