Unveiling the resilience of smallholder farmers in Senegal amidst extreme climate conditions

Author:

Moller Kieron1,Nejadhashemi A. Pouyan12ORCID,Talha Muhammad13,Chikafa Mervis1,Eeswaran Rasu14ORCID,Junior Nilson Vieira5,Carcedo Ana Julia Paula5,Ciampitti Ignacio5,Bizimana Jean‐Claude6,Diallo Amadiane7,Prasad P. V. Vara58ORCID

Affiliation:

1. Department of Biosystems and Agricultural Engineering Michigan State University East Lansing Michigan USA

2. Department of Plant, Soil and Microbial Sciences Michigan State University East Lansing Michigan USA

3. Department of Computer Science and Engineering Michigan State University East Lansing Michigan USA

4. Department of Agronomy, Faculty of Agriculture University of Jaffna Jaffna Sri Lanka

5. Department of Agronomy Kansas State University Manhattan Kansas USA

6. Department of Agricultural Economics Texas A&M University College Station Texas USA

7. Direction de l'Analyse, de la Prévision et des Statistiques Agricoles (DAPSA) Ministère de l'Agriculture et de l'Équipement Rural, PG8M+G77 Dakar Senegal

8. Feed the Future Sustainable Intensification Innovation Lab Kansas State University Manhattan Kansas USA

Abstract

AbstractIn Senegal, agriculture is an important sector underpinning the socioeconomic fabric of the populace. Notably, the agricultural production in this region exhibits heightened sensitivity to climatic perturbations, particularly droughts and heat waves. This study aims to determine the resilience of different agronomic interventions for farmers practicing mixed farming that produce both crops (i.e., groundnut (Arachis hypogaea L.) and pearl millet (Pennisetum glaucum (L.) R. Br.)) and raise animals in the Groundnut Basin in Senegal, which holds historical and socioeconomic significance. To understand the current situation regarding demographics, economics, consumption behavior, and farm operations for smallholder farmers, data were comprehensively collected from government and nongovernment organizations (NGO) reports, scientific papers, organization databases, and surveys. Additionally, the Agricultural Production Systems sIMulator (APSIM) was used to understand how combinations of three planting dates, three plant densities, and six urea nitrogen (N) fertilizer rates affected the yield of pearl millet, which were used as the alternative scenarios to the baseline in the farm modeling and analyses. All the collected and generated data were used as inputs into the Farm Simulation Model (FARMSIM) to generate economic, nutritional, and risk data associated with mixed farming systems. The generated data were then used to determine the resilience of the alternative scenarios against the baseline. Initially, a multi‐objective optimization was employed to meet nutritional needs while maintaining a healthy diet at the lowest cost. Then, the scenarios that met the population's nutritional requirements were evaluated based on four economic indicators: net cash farm income (NCFI), ending cash reserves (EC), net present value (NPV), and internal rate of return (IRR). Lastly, those that passed the economic feasibility test were ranked based on risk criteria certainty equivalent (CE) and risk premium (RP). The analyses found N fertilizer rates of 0, 20, and 100 kg N ha−1 were generally economically not feasible. Additionally, medium (early‐July to late‐August) and late (late‐July to mid‐September) planting dates generally performed better than early (early‐June to late‐July) planting dates, while plant densities of 3.3 and 6.6 pL m−2 performed better than 1.1. The robust resilience approach introduced in this study is easily transferable to other regions.

Funder

United States Agency for International Development

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3