Artificial intelligence for cervical cancer screening: Scoping review, 2009–2022

Author:

Vargas‐Cardona Hernán Darío1ORCID,Rodriguez‐Lopez Mérida23ORCID,Arrivillaga Marcela1ORCID,Vergara‐Sanchez Carlos4ORCID,García‐Cifuentes Juan P.1ORCID,Bermúdez Paula C.1ORCID,Jaramillo‐Botero Andres56ORCID

Affiliation:

1. Pontificia Universidad Javeriana Cali Cali Colombia

2. Faculty of Health Sciences Universidad Icesi Cali Colombia

3. Fundación Valle del Lili, Centro de Investigaciones Clínicas Cali Colombia

4. University of Miami, HCA Florida JFK Medical Center Palm Beach Florida USA

5. OMICAS Research Institute (iOMICAS), Pontificia Universidad Javeriana Cali Cali Colombia

6. Chemistry and Chemical Engineering California Institute of Technology Pasadena California USA

Abstract

AbstractBackgroundThe intersection of artificial intelligence (AI) with cancer research is increasing, and many of the advances have focused on the analysis of cancer images.ObjectivesTo describe and synthesize the literature on the diagnostic accuracy of AI in early imaging diagnosis of cervical cancer following Preferred Reporting Items for Systematic Reviews and Meta‐Analyses Extension for Scoping Reviews (PRISMA‐ScR).Search StrategyArksey and O'Malley methodology was used and PubMed, Scopus, and Google Scholar databases were searched using a combination of English and Spanish keywords.Selection CriteriaIdentified titles and abstracts were screened to select original reports and cross‐checked for overlap of cases.Data Collection and AnalysisA descriptive summary was organized by the AI algorithm used, total of images analyzed, data source, clinical comparison criteria, and diagnosis performance.Main ResultsWe identified 32 studies published between 2009 and 2022. The primary sources of images were digital colposcopy, cervicography, and mobile devices. The machine learning/deep learning (DL) algorithms applied in the articles included support vector machine (SVM), random forest classifier, k‐nearest neighbors, multilayer perceptron, C4.5, Naïve Bayes, AdaBoost, XGboots, conditional random fields, Bayes classifier, convolutional neural network (CNN; and variations), ResNet (several versions), YOLO+EfficientNetB0, and visual geometry group (VGG; several versions). SVM and DL methods (CNN, ResNet, VGG) showed the best diagnostic performances, with an accuracy of over 97%.ConclusionWe concluded that the use of AI for cervical cancer screening has increased over the years, and some results (mainly from DL) are very promising. However, further research is necessary to validate these findings.

Funder

Consortium for Ocean Leadership

Publisher

Wiley

Subject

Obstetrics and Gynecology,General Medicine

Reference55 articles.

1. Cancer (IARC) TIA for R on.Global Cancer Observatory n.d. Accessed February 22 2023.https://gco.iarc.fr/

2. Organización Panamericana de la Salud.Plan de acción sobre la prevención y el control del cáncer cervicouterino 2018–2030.2018.

3. Cervical Cancer Screening Programs in Latin America and the Caribbean

4. Correlación diagnóstica de la citología cervical versus colposcopia en lesiones premalignas de cáncer cervicouterino. IPS Universitaria Barranquilla 2013;Carrascal M;Biociencias,2014

5. Accuracy of cervical cytology: comparison of diagnoses of 100 Pap smears read by four pathologists at three hospitals in Norway

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3