Detection of fetal facial anatomy in standard ultrasonographic sections based on real‐time target detection network

Author:

Liu Zhonghua1,Yu Weifeng1,Wu Xiuming1,Yang Tong2,Lyu Guorong34,Liu Peizhong25,Xue Hao5

Affiliation:

1. Department of Ultrasound Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou China

2. School of Medicine Huaqiao University Quanzhou Fujian China

3. Department of Ultrasound The Second Affiliated Hospital of Fujian Medical University Quanzhou Fujian China

4. Collaborative Innovation Center for Maternal and Infant Health Service Application Technology Quanzhou Medical College Quanzhou China

5. College of Engineering Huaqiao University Quanzhou Fujian China

Abstract

AbstractAt present, prenatal ultrasound is one of the important means for screening fetal malformations. In the process of prenatal ultrasound diagnosis, the accurate recognition of fetal facial ultrasound standard plane is crucial for facial malformation detection and disease screening. Due to the dense distribution of fetal facial images, no obvious structure contour boundary, small structure area, and large area overlap in the middle of the structure detection frame, this paper regards the fetal facial standard plane and its structure recognition as a universal target detection task for the first time, and applies real‐time YOLO v5s to the fetal facial ultrasound standard plane structure detection and classification task. First, we detect the structure of a single slice, and take the structure of a slice class as the recognition object. Second, we carry out structural detection experiments on three standard planes; then, on the basis of the previous stage, the images of all parts included in the ultrasound examination of multiple fetuses were collected. In the single‐class structure detection experiment and the structure detection and classification experiment of three types of standard planes, the overall recognition effect of Precision and Recall index data is better, with Precision being 98.3% and 98.1%, and Recall being 99.3% and 98.2%, respectively. The experimental results show that the model has the ability to identify fetal facial anatomy and standard sections in different data, which can help the physician to automatically and quickly screen out the standard sections of each fetal facial ultrasound.

Funder

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Obstetrics and Gynecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3