Mesenchymal Stem Cells are Recruited and Activated into Carcinoma-Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-β1

Author:

Barcellos-de-Souza Pedro12,Comito Giuseppina1,Pons-Segura Coral1,Taddei Maria Letizia1,Gori Valentina3,Becherucci Valentina3,Bambi Franco3,Margheri Francesca1,Laurenzana Anna1,Del Rosso Mario1,Chiarugi Paola1

Affiliation:

1. Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, Florence, Italy

2. Ministry of Education of Brazil, CAPES Foundation, Brasília, DF, Brazil

3. Department of Oncohematology, Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy

Abstract

Abstract Tumor stromal cells can supply appropriate signals that may develop aggressive phenotypes of carcinoma cells and establish a complex scenario which culminates in metastasis. Recent works proposed that bone marrow-derived mesenchymal stem cells (MSC) are recruited to primary tumors. However, the exact functions of these cells in the tumor microenvironment are not well characterized, as it is reported that MSC can either promote or inhibit tumor progression. In the present study, we aim at investigating the signaling molecules which regulate the interplay between MSC, prostate carcinoma (PCa) cells and two important cellular types constituting the tumor-associated stroma, macrophages and fibroblasts, during their progression toward malignancy. We identified TGF-β1 as a crucial molecule able to attract MSC recruitment both to PCa cells as well as to tumor stroma components. Moreover, PCa- and tumor stroma-secreted TGF-β1 is important to induce MSC transdifferentiation into carcinoma-associated fibroblast (CAF)-like cells. Consequently, the CAF-like phenotype acquired by MSC is central to promote tumor progression related effects. Thus, tumor-educated MSC enhance PCa invasiveness compared to nonactivated MSC. Additionally, differing from normal MSC, CAF-like MSC perform vascular mimicry and recruit monocytes, which can be further polarized to M2 macrophages within the PCa environment. Our findings indicate a prominent role for TGF-β1 in MSC mobilization and activation strengthened by the fact that the blockade of TGF-β1 signaling impairs MSC promotion of PCa progression.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3