Defective Joint Development and Maintenance in GDF6-Related Multiple Synostoses Syndrome

Author:

Yu Tingting1,Li Guoqiang1,Wang Chen2,Li Niu1,Yao Ruen1,Wang Jian1ORCID

Affiliation:

1. Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China

2. Department of Laboratory Medicine, Zhongshan Hospital Fudan University Shanghai China

Abstract

ABSTRACT Multiple synostoses syndromes (SYNS) are a group of rare genetic bone disorders characterized by multiple joint fusions. We previously reported an SYNS4-causing GDF6 c.1330 T > A (p.Tyr444Asn) mutation, which reduced Noggin-induced GDF6 inhibition and enhanced SMAD1/5/8 signaling. However, the mechanisms by which GDF6 gain-of-function mutation alters joint formation and the comprehensive molecular portraits of SYNS4 remain unclear. Herein, we introduce the p.Tyr443Asn (orthologous to the human GDF6 p.Tyr444Asn) mutation into the mouse Gdf6 locus and report the results of extensive phenotype analysis, joint development investigation, and transcriptome profiling of Gdf6 p.Tyr443Asn limb buds. Gdf6 p.Tyr443Asn knock-in mice recapitulated the morphological features of human SYNS4, showing joint fusion in the wrists, ankles, phalanges, and auditory ossicles. Analysis of mouse embryonic forelimbs demonstrated joint interzone formation defects and excess chondrogenesis in Gdf6 p.Tyr443Asn knock-in mice. Further, RNA sequencing of forelimb buds revealed enhanced bone formation and upregulated bone morphogenetic protein (BMP) signaling in mice carrying the Gdf6 p.Tyr443Asn mutation. Because tightly regulated BMP signaling is critical for skeletal development and joint morphogenesis, our study shows that enhancing GDF6 activity has a significant impact on both prenatal joint development and postnatal joint maintenance. © 2023 American Society for Bone and Mineral Research (ASBMR).

Funder

Project of Shanghai Municipal Science and Technology Commission

Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3