Synthesis of a new Schiff base acceptor–donor molecule as a UV stabilizer for enhanced poly(lactic acid) (PLA) photoprotection

Author:

Mohammad Hamid J.1,Ahmed Ayysha Shihab1,Saleh Taiseer Abdul‐kader2,Anwer Mohammed Basil3,Hamzah Hussein A.4,Alshareef Sohad A.5,Alhuwaymil Zamzam6,Jwad Rasha Saad7,Al‐Mashhadani Mohammed H.4ORCID

Affiliation:

1. Department of Applied Chemistry College of Applied Science, Samarra University Samarra Iraq

2. Department of Chemistry College of Education, Samarra University Samarra Iraq

3. Department of Forensic Science College of Science, Al‐Nahrain University Baghdad Iraq

4. Department of Chemistry College of Science, Al‐Nahrain University Baghdad Iraq

5. University College of Duba University of Tabuk Tabuk Saudi Arabia

6. Department of Chemistry College of Science and Humanites at Al‐Quway'iyah, Shaqra University Shaqra Saudi Arabia

7. Department of Medical Physics College of Science, Al‐Nahrain University Baghdad Iraq

Abstract

AbstractPoly(lactic acid) (PLA) is a biodegradable aliphatic polyester of significant interest. Owing to its traits, PLA stands out as one of the most widely used polymers in various fields. Nevertheless, environmental conditions, such as heat, UV light, and humidity have negative impacts on the polymer's performance as a result of the accelerating aging process. In this study, we present a novel acceptor–donor (AD) Schiff base molecule that demonstrates significant UV stabilization when incorporated into the polymer's matrix. The stabilization effect of the AD molecule was studied by using the weight loss method and tracking the functional group indices of CO (ICO) and OH (IOH) that emerge because of polymer degradation after irradiation with UV light for 300 h. The films' structures were studied by scanning electronic microscopy (SEM), atomic force microscope (AFM), and energy‐dispersive x‐ray spectroscopy (EDX) to evaluate the stabilization enhancement of AD moiety. The results exhibit a significant decrease in weight loss for blended PLA, in contrast to blank PLA. The weight loss percentage reduced from 2.5 for blank PLA to less than 0.7 for blended PLA. Furthermore, ICO and IOH indices witness a remarkable reduction which verifies the improved photodegradation resulting from AD moiety. The suggested method involves the efficient absorption of UV radiation produced during photo‐degradation by the AD molecule, which then emits this light as visible blue light without causing any damage to PLA film's chemical structure. Our results demonstrate the adaptability of AD molecules as PLA photo‐stabilizers and point to their wider significance for sustainable material applications. This work advances the stability of PLA films and provides opportunities for the creation of novel stabilization techniques based on organic electrical principles. Future studies may examine the multipurpose uses of the AD molecule in sensor materials and other contexts.Highlights Presenting a novel acceptor–donor Schiff base as a phot stabilizer of PLA. Using the weight loss method and tracking the functional group indices to test the degradation. A significant decrease in weight loss for blended PLA, in contrast to blank PLA. The Schiff base absorbing UV light, excited electrons from ground state to excited state. They return to the ground state and produce bright blue light. These movement of electrons cause no damage to the PLA polymer chains.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3