Significant role of novel additives in improving the antibacterial properties of rubber composite: A comprehensive review

Author:

Kandil Heba1ORCID

Affiliation:

1. Polymers and Pigments Department, Chemical Industries Research Institute National Research Centre Giza Egypt

Abstract

AbstractAntibacterial products have gained considerable attention from both the academic and industrial communities due to the transmission of several infectious diseases which has raised public awareness of the disinfection pathways of such highly infectious bacteria. Among the materials that have raised public awareness are rubber composite materials as they are present in many different applications, such as medical apparatus, health care products, food packaging, and house furnishings Therefore, the development of rubber‐composite‐based materials with antibacterial activity is crucial to avoid the propagation of pathogens. In this regard, researchers have directed their focus toward the development of innovative additives with antibacterial properties to enhance the antibacterial activities of rubber composites. Several promising additives have emerged, most notably metal and metal oxide nanoparticles, biopolymers, plant‐derived materials, and synthetic organic compounds. The studies have shown that the incorporation of these additives endows the rubber composites with antibacterial properties, making them applicable in a range of biomedical uses. In light of these findings, the present review aims to cover recent works to improve the antibacterial properties of rubber composites using different additives.Highlights Rubber composite materials, found in various applications like medical apparatus and food packaging, have raised public awareness of infection prevention. Development of rubber‐composite‐based materials with antibacterial activity is crucial for preventing pathogen propagation. Researchers focus on innovative additives, including metal nanoparticles, biopolymers, plant‐derived materials, and synthetic organic compounds, to enhance antibacterial properties. Incorporating these additives into rubber composites endows them with antibacterial properties, suitable for biomedical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3