Affiliation:
1. Institute of Pharmaceutical Department The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine Hefei P. R. China
2. Institute of school of pharmacy Anhui University of Chinese Medicine Hefei P. R. China
Abstract
AbstractIntroductionPrevious studies have shown that Gandouling (GDL) may alleviate the nerve damage caused by Wilson's disease (WD) by inhibiting the autophagy of nerve cell mitochondria. However, its mechanisms are still unclear. Revealing the therapeutic mechanism of GDL is beneficial for its clinical application and provides theoretical support for the development of new formulations for treating WD.MethodThis time we found that the oxidative stress level in the body of the copper‐overloaded WD rates increased, neurons in the hippocampus were damaged, and autophagy occurred. GDL reversed these situations and significantly improved the learning, memory, and spatial cognitive abilities of the high‐copper‐loaded WD rates. After GDL intervention, the expression of phosphatidylinositol‐3 kinase (PI3K), phosphorylated serine–threonine protein kinase (AKT), and phosphorylated forkhead box protein O1 (FoxO1) significantly increased, whereas FoxO1 in the nucleus decreased and phosphorylated FoxO1 in the cytoplasm also significantly raised. In addition, the expression of Sirt1 significantly declined, and Ac‐FoxO1 in the nucleus also significantly increased.ResultsThese data indicated that GDL may promote the phosphorylation of FoxO1 and promote its nucleation by activating the PI3K/AKT/FoxO1 signaling pathway and inhibit Ac‐FoxO1 hydrolysis in the nucleus through the Sirt1/FoxO1 signaling pathway to suppress the transcriptional activity of FoxO1.ConclusionFurthermore, it inhibited the expression of autophagy genes Atg12 and Gabarapl1. In summary, our work provides new insights into the potential mechanisms of GDL repairing WD neuronal damage through autophagy pathways.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献