High‐temperature energy storage performance of polyetherimide all‐organic composites enhanced by hindering charge hopping and molecular motion

Author:

Lin Songjia1ORCID,Min Daomin1ORCID,Wang Shihang1,Hao Yutao1,Song Xiaofan1,Ji Minzun1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering Xi'an Jiaotong University Xi'an China

Abstract

AbstractDielectric capacitors are widely used in aerospace, power systems, and other fields. Working environments with ever‐increasing temperatures pose a new challenge to energy storage performance. Polyetherimide (PEI) has gained extensive research for its good high‐temperature properties. In order to further improve its energy storage performance at high temperatures, many researchers have worked on PEI all‐organic composites doping with molecular semiconductors. Previous studies generally only considered the effect of introduced deep traps on macroscopic properties such as electrical conductivity, electrical breakdown, and energy storage performance. It has been shown that only qualitative analyses can be performed from the perspective of charge trapping, and it is difficult to obtain quantitative results. Therefore, this work proposes to study the macroscopic properties of polymer dielectrics by combining charge trapping with molecular displacement. A comprehensive conduction‐breakdown‐energy storage model was established to explain the influence mechanism of molecular semiconductors on the improved energy storage performance of PEI composites at high temperatures. The molecular semiconductor fillers increase the coefficient of friction between molecular chains, which restricts the movement of molecular chains and also limits charge hopping. Therefore, the dielectrics have higher breakdown strengths and smaller conduction losses, which synergistically enhance the energy storage performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3