The phase transition behavior of polybutene in partial melting/polybutene/polypropylene

Author:

Zhu Enci1,Hao Ruosong2,Liu Zhipeng1,Shi Weixuan1,Wu Tong13,Zhao Shicheng1ORCID

Affiliation:

1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State‐Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China

2. Department of Polymer Materials and Engineering Northwestern Polytechnical University Xi'an People's Republic of China

3. SINOPEC Ningbo New Materials Research Institute Company Limited Ningbo People's Republic of China

Abstract

AbstractPolybutene (PB) is a typical polymer with various crystal forms: I, II, III, and I′. Among them, the mechanical properties of Form I PB is better but only Form II crystal can be obtained from the melt due to the kinetic advantage and then transform to Form I slowly. While the slow phase transition rate restricts its application. Partial melting is applied to accelerate the phase transition, which was studied by Flash DSC. The results indicated that the phase transition behavior during partial melting shows dependence on the isothermal crystallization temperature and 70 °C is optimal, which can reduce the phase transition time from 20 h to 200 s. As the crystallization temperature determined, stepwise crystallization was used to accelerate the phase transition. The influence of nucleating temperature and time was investigated and the results indicated that 0 °C and 2 s are the best temperature and time, respectively. With stepwise crystallization, the phase transition time was further reduced to 50 s. Moreover, stepwise crystallization can increase the content of Form I crystal from 80.0% to 98.2%. The mechanism of phase transition during partial melting was proposed according to the results, which can supplement the existing phase transition mechanism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3