Investigation of lemon peel extract as a natural additive in polyvinyl alcohol/chitosan blend for advanced bioactive food packaging

Author:

Fakraoui Oumaima12,Atanase Leonard Ionut34,Salhi Slim5,Royaud Isabelle2ORCID,Arous Mourad1,Ayadi Zoubir2

Affiliation:

1. LaMaCoP, Faculty of Sciences of Sfax University of Sfax Sfax Tunisia

2. IJL, CNRS University of Lorraine Nancy France

3. Faculty of Medical Dentistry Apollonia University of Iasi Iasi Romania

4. Academy of Romanian Scientists Bucharest Romania

5. Laboratoire de Chimie Appliquée, Faculty of Sciences of Sfax University of Sfax, Campus Artem Sfax Tunisia

Abstract

AbstractLemon peel (LP) was integrated into polyvinyl alcohol/chitosan (PVA/CS) to produce innovative active food packaging films via solvent‐casting method. PVA/CS/LP biocomposites were prepared with varying LP contents (1%, 3%, and 5% by weight) to investigate their impact on morphological, thermal, structural, biodegradability, solubility, mechanical, and bioactivity properties of the PVA/CS blend. Scanning electron microscope analysis revealed a uniform dispersion of LP within the matrix. Attenuated total reflectance ‐ fourier transform Infrared spectroscopy (ATR‐FTIR) study confirmed interaction between lemon peel and the matrix. The incorporation of LP enhanced thermal stability and enzymatic activity of PVA/CS films while reducing their UV–vis light transparency. Additionally, the biodegradability of the biocomposites increased, reaching 74% after 30 days of soil burial. Moisture content, water solubility, and swelling decreased with LP content, favoring food preservation. It can be asserted from the tensile test that blending PVA with CS enhances the Young's modulus by 17%. The incorporation of LP into the PVA/CS blend further enhanced the Young's modulus and tensile strength to 1322 and 193 MPa, respectively, attributed to the strong hydrogen bonding between the PVA/CS matrix and LP. Moreover, PVA/CS/LP biocomposites effectively reduced weight loss in cherry tomatoes and inhibited microbial growth, suggesting their potential as eco‐friendly bioactive packaging materials for food preservation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3