Multistimuli responsive hydrogels with shape fix/memory capability fabricated from gold nanorod‐conjugated amino acid‐based vinyl polymer networks

Author:

Yamaguchi Yutaro1,Nishimura Shin‐nosuke1ORCID,Higashi Nobuyuki1ORCID,Koga Tomoyuki1ORCID

Affiliation:

1. Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering Doshisha University Kyoto Japan

Abstract

AbstractFabricating robust shape‐memory hydrogels that respond to multiple external stimuli is an important challenge in facilitating gel technology for versatile applications. In this study, we report a simple approach for constructing thermo‐, redox‐, and photo‐responsive hydrogels with high mechanical strength and shape fix/memory capability. Upper critical solution temperature (UCST)‐type amino acid‐based hydrogels were facilely prepared by radical copolymerization of N‐acryloyl glycinamide (NAGAm) with cystine‐derived divinyl acrylamides (ionic cystine [NAC] or nonionic cystine‐methyl ester [NACMe]) units at different monomer concentrations (1/2 M). These hydrogels were transparent and exhibited good mechanical strength (tensile strength of 0.3–0.4 MPa and breaking elongation of 400%–700%). All hydrogels showed UCST‐type swelling‐shrinking behaviors based on thermo‐driven reversible hydrogen bonds among the PNAGAm units, and thus could be fixed into variety of shapes and recovered to the original shape by temperature manipulation. The cystine‐based crosslinkers having SS bonds served as efficient redox‐sensitive and gold‐nanorod‐(AuNR)‐adsorbing moieties; thus, AuNR could be conjugated stably and evenly into the PNAGAm/NAC hydrogel. Moreover, upon light‐irradiation, the AuNR‐conjugated hybrid hydrogel exhibited shape‐memory behavior owing to the photothermal effect of the AuNRs. These multiresponsive/functional hydrogels composed of amino acid units have considerable potential for various applications in the fields of soft actuators and biomedicines.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3