Synthesis of 1,4‐dihydropyrrolo[3,2‐b]pyrrole‐containing donor–acceptor copolymers and their optoelectronic properties

Author:

Bell Kenneth‐John J.1,Sabury Sina2,Phan Vanessa1,Wagner Ethan M.1,Hawks Allison M.1,Bartlett Kimberley A.1,Collier Graham S.13ORCID

Affiliation:

1. Department of Chemistry and Biochemistry Kennesaw State University Kennesaw Georgia USA

2. School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymers Georgia Institute of Technology Atlanta Georgia USA

3. School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA

Abstract

AbstractDonor–acceptor (D–A)‐conjugated polymers have achieved promising performance metrics in numerous optoelectronic applications that continue to motivate studying structure–property relationships and discovering new materials. Here, the materials toolbox is expanded by synthesizing D–A copolymers where 1,4‐dihydropyrrolo[3,2‐b]pyrrole (DHPP) is directly incorporated into the main chain of D–A copolymers for the first time via direct heteroarylation polymerization. Notably, the synthetic complexity of DHPP‐containing polymers coupled with thieno[3,2‐b]pyrrole‐4,6‐dione (TPD) or 3,6‐bis(2‐thienyl)‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (Th2DPP) comonomers is calculated to be lower compared to many common conjugated polymers synthesized via direct arylation. The electron‐rich nature of DHPPs when coupled with TPD or DPP enables optoelectronic properties to be manipulated, evident by measuring distinctly different absorbance and redox properties. Additionally, these D–A copolymers demonstrate their potential in organic electronic applications, such as electrochromics and organic photovoltaics. The reported DHPP‐alt‐Th2DPP copolymer is the first DHPP‐based colored‐to‐transmissive electrochrome and achieves power conversion efficiencies of ~2.5% when incorporated into bulk heterojunction solar cells. Overall, the synthetic accessibility of DHPP monomers and their propensity to participate in robust polymerizations highlights the value of establishing structure–property relationships of an underutilized scaffold. These fundamental attributes serve to inform and advance efforts in the development of DHPP‐containing copolymers for various applications.

Funder

National Science Foundation

Kennesaw State University

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3