Gummy‐inspired natural eutectogels with high adhesiveness, toughness and humidity response

Author:

Li Zhiyang1,Ge Zhaolin1,Chen Qize1,He Yifei1,Wu Jin2,Xie Zhuang1ORCID

Affiliation:

1. School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Sun Yat‐sen University Guangzhou China

2. State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou China

Abstract

AbstractBiogel‐based ionic devices have emerged as versatile platforms for broad applications in wearable electronics, healthcare monitoring and bioelectronic interfaces. Electronic functions derived from fully edible natural soft materials are particularly attractive to allow low cost, green, biocompatible and biodegradable devices in biomedical areas as well as smart food package. This work presents a gummy‐inspired protein eutectogel by simply soaking gelatin hydrogels into solutions of natural deep eutectic solvent (NADES) consisting of sorbitol and citric acid to allow solvent exchange. Compared with the gelatin hydrogel, this natural eutectogel (NEG) exhibited anti‐drying and anti‐freezing performance, remarkably improved adhesiveness, room temperature degradability, as well as high mechanical toughness. The soaking conditions were investigated to tune the softness and ionic conductivity of the NEG, which revealed that the water content and acid ratio could significantly impact on the gel properties. Additionally, the eutectogel thin film exhibited good humidity sensing capability with a wide linear detection range (22%–98% RH), in which a soft patch was further demonstrated for breath test to detect various respiration frequencies. Thus, we believe the concept of NEG combining biopolymers and NADES can be explored in a broad range of soft devices for sensing, bio‐adhesives, energy supply or drug delivery.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eutectic gels: Presentation and prospect;Applied Materials Today;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3