High tough, self‐adhesive, conductive double network hydrogel for flexible strain sensors

Author:

Li Feihong1,Liu Peng1ORCID,Li Xiangyu1,Bi Yuanyuan1,Chen Changxiu1,Zhang Hanzhi1,Li Yuanhang1,Yu Yunwu1,Gu Yaxin1,Tang Ning1

Affiliation:

1. School of Materials Science and Engineering Shenyang Jianzhu University Shenyang China

Abstract

AbstractThe application of adhesive conductive hydrogel materials in flexible sensors has been extensively studied. However, existing adhesive hydrogel sensor materials have problems such as poor adhesion, low conductivity, and difficulty in balancing mechanical and adhesive properties, which limit their practical applications. In this study, we propose a simple and economical method to fabricate double‐network hydrogels for flexible strain sensors by dissolving acrylamide (AM), chitosan (CS), polyethylene glycol (PEG) and gelatin (Gel) in a mixed solvent of deionized water and a food‐grade phosphate. The prepared AM/CS/PEG/Gel (ACPG) hydrogel exhibits excellent toughness (maximum stress of 154 kPa, maximum elongation of 2256%), self‐adhesiveness (maximum adhesion strength to wood of 17.2 kPa), and high conductivity (2.33 S/m). Compared with similar adhesive hydrogels, the conductivity of ACPG hydrogel is significantly improved. Therefore, ACPG hydrogel can be used as an ideal material for flexible sensors, and has broad application potential in wearable devices and human‐computer interaction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3