Failure mechanism and divisional differentiated control of surrounding rock in mining roadway under remaining coal pillar in close‐distance coal seam

Author:

Chen Dong‐dong1ORCID,Ma Xiang1ORCID,Wu Yi‐yi1,Xie Sheng‐rong1ORCID,Li Hui1,Jiang Zai‐sheng1,Wang En12ORCID,Guo Fang‐fang1,Guo Wen‐ke1,Ye Qiu‐cheng1

Affiliation:

1. School of Energy and Mining Engineering China University of Mining and Technology‐Beijing Beijing China

2. Department of Civil Engineering The University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractRegarding the issue of intense mining pressure appearing in the underlying gateway below the remaining coal pillar in the close‐distance coal seam (the remaining coal pillar is perpendicular to the underlying section coal pillar), 401 working face is used as the engineering background. Field measurements, laboratory experiments, numerical simulations, and engineering verification techniques are used to study the abutment pressure's evolution properties and the plastic zone's propagation laws before and after the underlying coal seam roadway experienced the mining impact. The conclusions are as follows: ① The maximum plastic area on the two sides and the roof of the roadway underlying the gob are up to 2 and 1.5 m, whereas the maximum plastic area on the two sides and the roof of the roadway underlying the remaining coal pillar are up to 5 and 4.5 m, respectively. Moreover, the plastic area extends along the two sides, and the section coal pillar is completely broken when the working face is mined below the remaining coal pillar. ② The stress increase coefficient K in the overlap area of the remaining coal pillar and the underlying section coal pillar reaches 3.4 when the mining face penetrates the underlying remaining coal pillar and the advance abutment pressure is overlaid with the concentrated stress of the coal pillar. ③ When the underlying working face is mined to 4, −2, −8, and −14 m away from the remaining coal pillar, the damage range of the roadway 5–10 m ahead increases in turn. At the same time, the maximum plastic area of the roof passes through the plastic area of the upper coal seam floor. Therefore, the underlying and transition areas on both sides of the remaining coal pillar are divided into Area I (15 m) → Area II (the most complicated area to control under the remaining coal pillar, 20 m) → Area III (25 m) according to the width. Furthermore, the divisional differentiated combined control technology of channel steel truss anchor cable with joint double‐way locking control function of roof and coal pillar in Areas I and III, while channel steel truss anchor cable with joint double‐way locking control function of roof and side + high resistance integral door‐type support is proposed in Area II. Field engineering practice shows that the deformation of the roadway surrounding rock can be controlled within 210 mm after adopting the above divisional combined control technology. Finally, the mining operation can safely and efficiently pass through the remaining coal pillar. The research results have important reference values for surrounding rock control of mining roadways in the overlapping area of similar “+”‐type cross‐working face.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Reference45 articles.

1. Stability control of gob-side entry retained under the gob with close distance coal seams

2. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining

3. Development characteristics and field detection of overburden fracture zone in multiseam mining: A case study

4. Study on asymmetric deformation mechanism of surrounding rock of roadway under the effect of isolated coal pillar;Zhao H;Chin J Rock Mech Eng,2020

5. Study of the mechanism and evolution law of unsymmetrical failure of the mining roadway in close‐distance coal seam;Zhao H;J China Univ Min Technol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3