Engineering of the Lrp/AsnC‐type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L‐cysteine biosynthesis pathway in Escherichia coli

Author:

Zhou Zhiyou1ORCID,Li Zonglin1,Zhong Yahui1,Xu Shuai1,Li Zhimin12

Affiliation:

1. State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China

2. Shanghai Collaborative Innovation Center for Biomanufacturing Technology Shanghai China

Abstract

AbstractL‐cysteine is an important sulfur‐containing amino acid being difficult to produce by microbial fermentation. Due to the lack of high‐throughput screening methods, existing genetically engineered bacteria have been developed by simply optimizing the expression of L‐cysteine‐related genes one by one. To overcome this limitation, in this study, a biosensor‐based approach for multilevel biosynthetic pathway optimization of L‐cysteine from the DecR regulator variant of Escherichia coli was applied. Through protein engineering, we obtained the DecRN29Y/C81E/M90Q/M99E variant‐based biosensor with improved specificity and an 8.71‐fold increase in dynamic range. Using the developed biosensor, we performed high‐throughput screening of the constructed promoter and RBS combination library, and successfully obtained the optimized strain, which resulted in a 6.29‐fold increase in L‐cysteine production. Molecular dynamics (MD) simulations and electrophoretic mobility shift analysis (EMSA) showed that the N29Y/C81E/M90Q/M99E variant had enhanced induction activity. This enhancement may be due to the increased binding of the variant to DNA in the presence of L‐cysteine, which enhances transcriptional activation. Overall, our biosensor‐based strategy provides a promising approach for optimizing biosynthetic pathways at multiple levels. The successful implementation of this strategy demonstrates its potential for screening improved recombinant strains.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3