Affiliation:
1. Waisman Center University of Wisconsin‐Madison Madison Wisconsin USA
2. Department of Kinesiology, Occupational Therapy Program University of Wisconsin‐Madison Madison Wisconsin USA
3. Department of Medical Physics University of Wisconsin‐Madison Madison Wisconsin USA
4. Department of Pediatrics University of Wisconsin‐Madison Madison Wisconsin USA
5. Department of Radiology University of Wisconsin‐Madison Madison Wisconsin USA
6. Department of Psychiatry University of Wisconsin‐Madison Madison Wisconsin USA
7. Department of Statistics University of Wisconsin‐Madison Madison Wisconsin USA
Abstract
AbstractAlthough multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0–10.9 years). Participants completed an assessment of core autism features and diffusion‐ and T1‐weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0–17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation‐alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA‐PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA‐PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio‐respiration in animal models, was associated with social communication in children, while the LPB, a pain‐network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.
Funder
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献