Optimal sensor placement for joint reconstruction of multiscale responses and unknown inputs using modal Kalman filter

Author:

He Jia1ORCID,Tong Zhuohui1,Zhang Xiaoxiong1,Chen Zhengqing1

Affiliation:

1. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Key Laboratory of Wind and Bridge Engineering of Hunan Province, College of Civil Engineering Hunan University Changsha China

Abstract

SummaryMany optimal sensor placement (OSP) techniques have been developed basing on known external loads. However, it is often difficult to obtain excitation measurements. Therefore, the development of OSP under unknown inputs (OSP‐UI) is desirable. In this paper, based on modal Kalman filter (MKF), an OSP‐UI approach (MKF‐OSP‐UI) is proposed for optimally determining the number and locations of multitype sensors with the aim of minimizing the reconstructed responses errors. An MKF‐based approach previously developed by the authors is first employed for estimating multiscale structural responses and unknown loads. Then, an error covariance matrix is defined as a measure of the differences between the reconstructed responses and the corresponding actual ones. By using the covariance matrix of measurement noise for normalization, the ill‐conditioning problem caused by data fusion of multiscale responses is avoided. The sensors that have few contributions to the reconstructed responses are removed from the candidate set during iteration procedure. The sensor placement is finally determined when the estimation errors are below the preset level. Numerical results show that the sensor configuration determined by the proposed approach has a better performance on the joint estimation of multiscale responses and unknown inputs, as compared with that determined by experience.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3